Definition: The definite integral of the function $y=f(x)$ on the interval $[a, b]$ is denoted by

$$
\int_{a}^{b} f(x) d x
$$

and is defined by the limit

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty}\left(\sum_{j=1}^{n} f\left(x_{j}^{*}\right) \cdot \Delta x_{j}\right)
$$

where for each n :

- $a=x_{0}<x_{1}<x_{2}<\cdots<x_{n-1}<x_{n}=b$;
- x_{j}^{*} is some point in the interval $\left[x_{j-1}, x_{j}\right]$, i.e., $x_{j-1} \leq x_{j}^{*} \leq x_{j}$;
- $\Delta x_{j}=x_{j}-x_{j-1}$, for $j=1,2, \ldots, n$.
- $\lim _{n \rightarrow \infty}\left[\max \left(\Delta x_{j}: 1 \leq j \leq n\right)\right]=0$.
(*) The collection of subintervals $\left[x_{0}, x_{1}\right],\left[x_{1}, x_{2}\right], \ldots,\left[x_{n-1}, x_{n}\right]$ is called a partition of the original interval $[a, b]$. The length of longest subinterval in any given partition, $\max \left(\Delta x_{j}: 1 \leq j \leq n\right)$, is called the diameter of the partition.

Comments:

(*) A definite integral $\int_{a}^{b} f(x) d x$ returns a numerical value.
(*) If the function $f(x)$ is continuous in the interval $[a, b]$, then the limit defining the definite integral always exists.
(*) The value of the limit does not depend on how the partitions are chosen or how the points x_{j}^{*} are selected from each subinterval in each subinterval of the partition, as long as the diameter of the partition is approaching 0.
(*) Computing area is an application of definite integrals - not the way that they are defined.
(*) If $a=x_{0}<x_{1}<x_{2}<\cdots<x_{n}=b$ is a partition of [$\left.a, b\right]$ and $x_{j-1} \leq x_{j}^{*} \leq x_{j}$ for each j, then the sum

$$
\sum_{j=1}^{n} f\left(x_{j}^{*}\right) \cdot \Delta x_{j}
$$

is called a Riemann sum.

The most common choice:

(*) Divide the interval $[a, b]$ into n equal pieces. Then

$$
\Delta x_{j}=\frac{b-a}{n}
$$

and

$$
x_{j}=a+j \cdot \Delta x_{j}=a+j \cdot \frac{b-a}{n}
$$

for each j.
(*) This also guarantees that $\Delta x_{j} \rightarrow 0$ as $n \rightarrow \infty$.
(*) If $x_{j}^{*}=x_{j-1}$, then the resulting (Riemann) sum is a Left hand sum:

$$
L H S(n)=\sum_{j=1}^{n} f\left(x_{j-1}\right) \Delta x
$$

(*) If we set $x_{j}^{*}=x_{j}$, then the resulting (Riemann) sum is a Right hand sum:

$$
R H S(n)=\sum_{j=1}^{n} f\left(x_{j}\right) \Delta x
$$

Example 1: Find the area of the region bounded by the curve $y=x^{2}$ and the lines $y=0, x=1$ and $x=3$.

Figure 4: The region in Example 1.
(*) Use right hand sums to calculate

$$
\operatorname{area}(\mathcal{R})=\int_{1}^{3} x^{2} d x
$$

Figure 4: Right hand rectangles.
(*) Divide the interval $[1,3]$ into n equal pieces, then...

1. $\Delta x_{j}=\frac{3-1}{n}=\frac{2}{n}$, and
2. $x_{j}=1+j \cdot \frac{2}{n}=1+\frac{2 j}{n}$.
(*) Write down a right hand sum for this problem:

$$
R H S(n)=\sum_{j=1}^{n} f\left(x_{j}\right) \Delta x_{j}=\sum_{j=1}^{n} x_{j}^{2} \cdot \frac{2}{n}=\sum_{j=1}^{n}\left(1+\frac{2 j}{n}\right)^{2} \cdot \frac{2}{n}
$$

(*) Simplify:

$$
\begin{aligned}
R H S(n) & =\sum_{j=1}^{n}\left(1+\frac{2 j}{n}\right)^{2} \cdot \frac{2}{n}=\frac{2}{n} \sum_{j=1}^{n}\left(1+\frac{4 j}{n}+\frac{4 j^{2}}{n^{2}}\right) \\
& =\frac{2}{n}\left(\sum_{j=1}^{n} 1+\frac{4}{n} \sum_{j=1}^{n} j+\frac{4}{n^{2}} \sum_{j=1}^{n} j^{2}\right) \\
& =\frac{2}{n} \cdot n+\frac{8}{n^{2}} \cdot \frac{n(n+1)}{2}+\frac{8}{n^{3}} \cdot \frac{n(n+1)(2 n+1)}{6} \\
& =2+\frac{4 n^{2}+4 n}{n^{2}}+\frac{8 n^{3}+12 n^{2}+4 n}{3 n^{3}} \\
& =2+4+\frac{8}{3}+\frac{4}{n}+\frac{4}{n}+\frac{4}{3 n^{2}} \\
& =\frac{26}{3}+\frac{8}{n}+\frac{4}{3 n^{2}}
\end{aligned}
$$

(*) Take the limit:

$$
\begin{aligned}
\operatorname{area}(& =\int_{1}^{3} x^{2} d x \\
& =\lim _{n \rightarrow \infty}\left(\sum_{j=1}^{n}\left(1+\frac{2 j}{n}\right)^{2} \cdot \frac{2}{n}\right) \\
& =\lim _{n \rightarrow \infty}\left(\frac{26}{3}+\frac{8}{n}+\frac{4}{3 n^{2}}\right) \\
& =\frac{26}{3}
\end{aligned}
$$

Example 2. Find the area of the region bounded by the lines $y=\frac{1}{2} x+1$, $y=0, x=0$ and $x=4$.

Figure 5: The region in Example 2.

Two methods:
(1) Use formulas from basic geometry to calculate $\operatorname{area}(\mathcal{R}) \ldots$
(a) Divide \mathcal{R} into a rectangle and a triangle:

(b) Calculate area of triangle and area of rectangle and add:

$$
\begin{aligned}
\operatorname{area}(\mathcal{R}) & =\operatorname{area}(\text { triangle })+\text { area }(\text { rectangle }) \\
& =1 \cdot 4+\frac{(3-1) \cdot 4}{2}=8
\end{aligned}
$$

(2) Use a definite integral...
(a) $\operatorname{area}(\mathcal{R})=\int_{0}^{4} \frac{1}{2} x+1 d x$
(b) Calculate the integral using righthand sums:

$$
\int_{0}^{4} \frac{1}{2} x+1 d x=\lim _{n \rightarrow \infty} \sum_{j=1}^{n}\left(\frac{1}{2} x_{j}+1\right) \Delta x_{j}
$$

In this example $\Delta x=\frac{4-0}{n}=\frac{4}{n}$ and $x_{j}=0+j \Delta x=\frac{4 j}{n}$, so

$$
\begin{aligned}
\int_{0}^{4} \frac{1}{2} x+1 d x & =\lim _{n \rightarrow \infty} \sum_{j=1}^{n}\left(\frac{1}{2} \frac{4 j}{n}+1\right) \frac{4}{n}=\lim _{n \rightarrow \infty}\left(\frac{4}{n} \sum_{j=1}^{n}\left(\frac{2 j}{n}+1\right)\right) \\
& =\lim _{n \rightarrow \infty}\left(\frac{4}{n} \sum_{j=1}^{n} \frac{2 j}{n}+\frac{4}{n} \sum_{j=1}^{n} 1\right)=\lim _{n \rightarrow \infty}\left(\frac{8}{n^{2}} \sum_{j=1}^{n} j+\frac{4}{n} \cdot n\right) \\
& =\lim _{n \rightarrow \infty}\left(\frac{8}{n^{2}} \cdot \frac{n(n+1)}{2}+4\right)=\lim _{n \rightarrow \infty}\left(4 \cdot \frac{n^{2}+n}{n^{2}}+4\right)=8
\end{aligned}
$$

