Definition: The *definite integral* of the function y = f(x) on the interval [a, b] is denoted by

$$\int_{a}^{b} f(x) \, dx$$

and is defined by the limit

$$\int_{a}^{b} f(x) \, dx = \lim_{n \to \infty} \left(\sum_{j=1}^{n} f(x_j^*) \cdot \Delta x_j \right),$$

where for each n:

- $a = x_0 < x_1 < x_2 < \dots < x_{n-1} < x_n = b;$
- x_j^* is some point in the interval $[x_{j-1}, x_j]$, i.e., $x_{j-1} \le x_j^* \le x_j$;

•
$$\Delta x_j = x_j - x_{j-1}$$
, for $j = 1, 2, ..., n$.

•
$$\lim_{n \to \infty} \left[\max(\Delta x_j : 1 \le j \le n) \right] = 0.$$

(*) The collection of subintervals $[x_0, x_1], [x_1, x_2], \ldots, [x_{n-1}, x_n]$ is called a *partition* of the original interval [a, b]. The length of longest subinterval in any given partition, $\max(\Delta x_j : 1 \le j \le n)$, is called the *diameter* of the partition.

Comments:

(*) A definite integral $\int_{a}^{b} f(x) dx$ returns a *numerical value*.

(*) If the function f(x) is *continuous* in the interval [a, b], then the limit defining the definite integral *always exists*.

(*) The value of the limit *does not depend* on how the *partitions* are chosen or how the points x_j^* are selected from each subinterval in each subinterval of the partition, as long as the *diameter* of the partition is approaching 0.

(*) Computing area is an *application* of definite integrals — not the way that they are defined.

(*) If $a = x_0 < x_1 < x_2 < \cdots < x_n = b$ is a partition of [a, b] and $x_{j-1} \leq x_j^* \leq x_j$ for each j, then the sum

$$\sum_{j=1}^{n} f(x_j^*) \cdot \Delta x_j$$

is called a *Riemann sum*.

The most common choice:

(*) Divide the interval [a, b] into n equal pieces. Then

$$\Delta x_j = \frac{b-a}{n}$$

and

$$x_j = a + j \cdot \Delta x_j = a + j \cdot \frac{b - a}{n}$$

for each j.

(*) This also guarantees that $\Delta x_j \to 0$ as $n \to \infty$.

(*) If $x_j^* = x_{j-1}$, then the resulting (Riemann) sum is a Left hand sum:

$$LHS(n) = \sum_{j=1}^{n} f(x_{j-1})\Delta x.$$

(*) If we set $x_j^* = x_j$, then the resulting (Riemann) sum is a Right hand sum:

$$RHS(n) = \sum_{j=1}^{n} f(x_j) \Delta x.$$

Example 1: Find the area of the region bounded by the curve $y = x^2$ and the lines y = 0, x = 1 and x = 3.

Figure 4: The region in Example 1.

(*) Use right hand sums to calculate

$$\operatorname{area}(\mathcal{R}) = \int_{1}^{3} x^2 \, dx$$

 (\bigstar) Write down a right hand sum for this problem:

$$RHS(n) = \sum_{j=1}^{n} f(x_j) \Delta x_j = \sum_{j=1}^{n} x_j^2 \cdot \frac{2}{n} = \sum_{j=1}^{n} \left(1 + \frac{2j}{n}\right)^2 \cdot \frac{2}{n}.$$

(*****) Simplify:

$$RHS(n) = \sum_{j=1}^{n} \left(1 + \frac{2j}{n}\right)^2 \cdot \frac{2}{n} = \frac{2}{n} \sum_{j=1}^{n} \left(1 + \frac{4j}{n} + \frac{4j^2}{n^2}\right)$$
$$= \frac{2}{n} \left(\sum_{j=1}^{n} 1 + \frac{4}{n} \sum_{j=1}^{n} j + \frac{4}{n^2} \sum_{j=1}^{n} j^2\right)$$
$$= \frac{2}{n} \cdot n + \frac{8}{n^2} \cdot \frac{n(n+1)}{2} + \frac{8}{n^3} \cdot \frac{n(n+1)(2n+1)}{6}$$
$$= 2 + \frac{4n^2 + 4n}{n^2} + \frac{8n^3 + 12n^2 + 4n}{3n^3}$$
$$= 2 + 4 + \frac{8}{3} + \frac{4}{n} + \frac{4}{n} + \frac{4}{3n^2}$$
$$= \frac{26}{3} + \frac{8}{n} + \frac{4}{3n^2}$$

Example 2. Find the area of the region bounded by the lines $y = \frac{1}{2}x+1$, y = 0, x = 0 and x = 4.

Figure 5: The region in Example 2.

Two methods:

(1) Use formulas from basic geometry to calculate area(\mathcal{R})...

(a) Divide \mathcal{R} into a rectangle and a triangle:

(b) Calculate area of triangle and area of rectangle and add:

 $\operatorname{area}(\mathcal{R}) = \operatorname{area}(\operatorname{triangle}) + \operatorname{area}(\operatorname{rectangle})$

$$= 1 \cdot 4 + \frac{(3-1) \cdot 4}{2} = 8.$$

(2) Use a definite integral...

(a) area(
$$\mathcal{R}$$
) = $\int_{0}^{4} \frac{1}{2}x + 1 \, dx$

(b) Calculate the integral using righthand sums:

$$\int_{0}^{4} \frac{1}{2}x + 1 \, dx = \lim_{n \to \infty} \sum_{j=1}^{n} \left(\frac{1}{2}x_j + 1\right) \Delta x_j$$

In this example $\Delta x = \frac{4-0}{n} = \frac{4}{n}$ and $x_j = 0 + j\Delta x = \frac{4j}{n}$, so

$$\int_{0}^{4} \frac{1}{2}x + 1 \, dx = \lim_{n \to \infty} \sum_{j=1}^{n} \left(\frac{1}{2}\frac{4j}{n} + 1\right) \frac{4}{n} = \lim_{n \to \infty} \left(\frac{4}{n}\sum_{j=1}^{n} \left(\frac{2j}{n} + 1\right)\right)$$
$$= \lim_{n \to \infty} \left(\frac{4}{n}\sum_{j=1}^{n}\frac{2j}{n} + \frac{4}{n}\sum_{j=1}^{n}1\right) = \lim_{n \to \infty} \left(\frac{8}{n^{2}}\sum_{j=1}^{n}j + \frac{4}{n} \cdot n\right)$$
$$= \lim_{n \to \infty} \left(\frac{8}{n^{2}} \cdot \frac{n(n+1)}{2} + 4\right) = \lim_{n \to \infty} \left(4 \cdot \frac{n^{2}+n}{n^{2}} + 4\right) = 8.$$