Optimization

Definition: If (a, b) is a point in the plane, then an open disk $D_{r}(a, b)$ (of radius $r>0$) centered at (a, b) is a set of the form

$$
D_{r}(a, b)=\left\{(x, y): \sqrt{(x-a)^{2}+(y-b)^{2}}<r\right\}
$$

A neighborhood N of (a, b) is any set that contains an open disk $D_{r}(a, b)$ centered at (a, b).

Definition: $f(a, b)$ is a relative minimum value of the function $z=f(x, y)$ if $f(a, b) \leq f(x, y)$ for all points (x, y) in some neighborhood N of (a, b).

Definition: $f(a, b)$ is a relative maximum value of the function $z=f(x, y)$ if $f(a, b) \geq f(x, y)$ for all points (x, y) in some neighborhood N of (a, b).

Key Fact: If $f(a, b)$ is a relative minimum or relative maximum value and if $f(x, y)$ is differentiable (in a neighborhood of (a, b)), then

$$
f_{x}(a, b)=0 \quad \text { and } \quad f_{y}(a, b)=0
$$

Definition: If $f_{x}(a, b)=0$ and $f_{y}(a, b)=0$, then (a, b) is a critical point (or stationary point) of $f(x, y)$ and $f(a, b)$ is a critical value.

Restating key fact: If $f(x, y)$ is differentiable, then its relative extreme values can only occur at critical points.

Explanation: If (x, y) is close to (a, b), then

$$
f(x, y) \approx T_{1}(x, y)=f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b) .
$$

If $f_{x}(a, b) \neq 0, y=b$ and $x \approx a$, then

$$
\begin{aligned}
f(x, b) & \approx T_{1}(x, b)=f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(b-b) \\
& =f(a, b)+f_{x}(a, b)(x-a),
\end{aligned}
$$

so

$$
f(x, b)-f(a, b) \approx f_{x}(a, b)(x-a) .
$$

Case 1. $f_{x}(a, b)>0$. If $x>a$, then $x-a>0$ so

$$
f(x, b)-f(a, b) \approx \overbrace{f_{x}(a, b)(x-a)}^{+}>0,
$$

which means that $f(a, b)$ is not a maximum value.
If $x<a$, then $x-a<0$ and

$$
f(x, b)-f(a, b) \approx \overbrace{f_{x}(a, b)(x-a)}^{+}<0,
$$

so $f(a, b)$ is not a minimum value.

Case 2. $f_{x}(a, b)<0$.
If $x>a$, then $x-a>0$ and

$$
f(x, b)-f(a, b) \approx \overbrace{f_{x}(a, b)(x-a)}^{-}<0
$$

so $f(a, b)$ is not a minimum value.
If $x<a$, then $x-a<0$ and

$$
f(x, b)-f(a, b) \approx \overbrace{f_{x}(a, b)(x-a)}^{-}>0
$$

so $f(a, b)$ is not a maximum value.
If $f_{y}(a, b) \neq 0$, then the analogous argument with $x=a$ and $y \approx b$ shows that $f(a, b)$ is neither a maximum nor a minimum value.

Conclusion: If $f_{x}(a, b) \neq 0$, then $f(a, b)$ is not a relative extreme value. The same argument shows that if $f_{y}(a, b) \neq 0$, then $f(a, b)$ is not a relative extreme value.
Therefore, if $f(a, b)$ is a relative extreme value, then $f_{x}(a, b)$ and $f_{y}(a, b)$ must both be 0 .

Example: Find the critical point(s) and critical values of the function

$$
f(x, y)=x^{2}+y^{2}-x y+x^{3}
$$

1. First order conditions:

$$
\begin{aligned}
& f_{x}=0 \Longrightarrow 2 x-y+3 x^{2}=0 \\
& f_{y}=0 \Longrightarrow 2 y-x=0
\end{aligned}
$$

2. Critical points: $f_{y}=0 \Longrightarrow x=2 y$ and substituting $2 y$ for x in the first equation gives

$$
2 x-y+3 x^{2}=0 \Longrightarrow \overbrace{4 y}^{2 \cdot 2 y}-y+\overbrace{12 y^{2}}^{3(2 y)^{2}}=0 \Longrightarrow 3 y(1+4 y)=0 .
$$

The critical y-values are $y_{1}=0$ and $y_{2}=-1 / 4$. Remember that at the critical points $x=2 y$, and therefore the critical points are

$$
\left(x_{1}, y_{1}\right)=(0,0) \text { and }\left(x_{2}, y_{2}\right)=(-1 / 2,-1 / 4) .
$$

3. Critical values: $\quad f(0,0)=0$ and $f(-1 / 2,-1 / 4)=\frac{1}{16}$.

Observation: The definitions of relative extreme values and of critical points generalize to functions of any number of variables, as does the connection between relative extreme values and critical points... Definition: The point $\left(x_{1}, \ldots, x_{k}\right)$ is close to the point $\left(a_{1}, \ldots, a_{k}\right)$ if

$$
x_{1} \approx a_{1}, x_{2} \approx a_{2}, \ldots, x_{k-1} \approx a_{k-1} \text { and } x_{k} \approx a_{k} .
$$

Definition: $f\left(a_{1}, \ldots, a_{k}\right)$ is a relative maximum (minimum) value of the function $y=f\left(x_{1}, \ldots, x_{k}\right)$ if

$$
f\left(a_{1}, \ldots, a_{k}\right) \geq f\left(x_{1}, \ldots, x_{k}\right) \quad\left(f\left(a_{1}, \ldots, a_{k}\right) \leq f\left(x_{1}, \ldots, x_{k}\right)\right)
$$

for all points $\left(x_{1}, \ldots, x_{k}\right)$ that are sufficiently close to $\left(a_{1}, \ldots, a_{k}\right)$.
Definition: The point $\left(a_{1}, \ldots, a_{k}\right)$ is a critical point of the function $f\left(x_{1}, \ldots, x_{k}\right)$ if
$f_{x_{1}}\left(a_{1}, \ldots, a_{k}\right)=0, f_{x_{2}}\left(a_{1}, \ldots, a_{k}\right)=0, \ldots$ and $f_{x_{k}}\left(a_{1}, \ldots, a_{k}\right)=0$
Fact: If $f\left(x_{1}, \ldots, x_{k}\right)$ is differentiable and $f\left(a_{1}, \ldots, a_{k}\right)$ is a relative extreme value, then $\left(a_{1}, \ldots, a_{k}\right)$ is a critical point of $f\left(x_{1}, \ldots, x_{k}\right)$.

Conclusion: To find the relative extreme values of a differentiable function $f\left(x_{1}, \ldots, x_{k}\right)$, we need to find its critical points. To do this, we need to solve the system of k equations in k variables:

$$
\begin{gathered}
f_{x_{1}}\left(x_{1}, \ldots, x_{k}\right)=0 \\
f_{x_{2}}\left(x_{1}, \ldots, x_{k}\right)=0 \\
\vdots \\
\vdots \\
f_{x_{k}}\left(x_{1}, \ldots, x_{k}\right)=0
\end{gathered}
$$

These equations are called the first order conditions for relative extrema.

Example: Find the critical point(s) of the function

$$
w=x^{2}+2 y^{2}-3 z^{2}+x y-2 x z+y z+2 x-3 y-2 z+1
$$

First order conditions:

$$
\begin{array}{rlr}
w_{x}=2 x+y-2 z+2=0 & \Longrightarrow & 2 x+y-2 z=-2 \\
w_{y}=4 y+x+z-3=0 & \Longrightarrow & x+4 y+z=3 \\
w_{z}=-6 z-2 x+y-2=0 & \Longrightarrow \quad-2 x+y-6 z=2 \tag{3}
\end{array}
$$

If we add equation (1) to equation (3) (eliminating the $x \mathrm{~s}$) we get

$$
\text { (4) } 2 y-8 z=0 \text {. }
$$

Adding $2 \times$ equation (2) to equation (3) (eliminating the $x \mathrm{~s}$ again) gives

$$
\text { (5) } \quad 9 y-4 z=8 \text {. }
$$

From equation (4) it follows that $y=4 z$, and substituting $y=4 z$ into equation (5) gives...

$$
36 z-4 z=8 \Longrightarrow z^{*}=\frac{8}{32}=\frac{1}{4}
$$

which implies that $y^{*}=4 z^{*}=1$.
Finally plugging $y^{*}=1$ and $z^{*}=1 / 4$ back into equation (2) we find that

$$
x+4+\frac{1}{4}=3 \Longrightarrow x^{*}=-\frac{5}{4}
$$

so there is only one critical point,

$$
\left(x^{*}, y^{*}, z^{*}\right)=(-5 / 4,1,1 / 4)
$$

and the critical value is

$$
w^{*}=w\left(x^{*}, y^{*}, z^{*}\right)=w(-5 / 4,1,1 / 4)=2
$$

Example: Find the critical point(s) and critical value(s) of the function

$$
F(u, v, w, \lambda)=5 \ln u+8 \ln v+12 \ln w-\lambda(10 u+15 v+25 w-3750)
$$

First order conditions:
(1)

$$
F_{u}=0 \Longrightarrow
$$

$$
(2) \quad F_{v}=0 \Longrightarrow
$$

$$
\text { (3) } \quad F_{w}=0 \Longrightarrow
$$

$$
\text { (4) } \quad F_{\lambda}=0 \Longrightarrow
$$

$$
\begin{aligned}
\frac{5}{u}-10 \lambda & =0 \\
\frac{8}{v}-15 \lambda & =0 \\
\frac{12}{w}-25 \lambda & =0 \\
-(10 u+15 v+25 w-3750) & =0
\end{aligned}
$$

Equation (1) implies that

$$
\frac{5}{u}=10 \lambda \Longrightarrow \lambda=\frac{1}{2 u}
$$

Likewise, equations (2) and (3) imply that

$$
\frac{8}{v}=15 \lambda \Longrightarrow \lambda=\frac{8}{15 v} \quad \text { and } \quad \frac{12}{w}=25 \lambda \Longrightarrow \lambda=\frac{12}{25 w}
$$

Comparing the first and second boxed equations shows that

$$
\lambda=\frac{1}{2 u}=\frac{8}{15 v} \Longrightarrow 15 v=16 u \Longrightarrow v=\frac{16 u}{15}
$$

and comparing the first and third boxed equations show that

$$
\lambda=\frac{1}{2 u}=\frac{12}{25 w} \Longrightarrow 25 w=24 u \Longrightarrow w=\frac{24 u}{25}
$$

Equation (4) simplifies

$$
\begin{gathered}
-(10 u+15 v+25 w-3750)=0 \Longrightarrow 10 u+15 v+25 w-3750=0 \\
\Longrightarrow 10 u+15 v+25 w=3750
\end{gathered}
$$

and substituting for v and w in this equation gives

$$
10 u+15 \cdot \frac{16 u}{15}+25 \cdot \frac{24 u}{25}=3750 \Longrightarrow 50 u=3750 \Longrightarrow u^{*}=75
$$

It follows that $v^{*}=\frac{16}{15} u^{*}=80, w^{*}=\frac{24}{25} u^{*}=72$ and $\lambda^{*}=\frac{1}{2 u^{*}}=\frac{1}{150}$. I.e., the critical point is $\left(u^{*}, v^{*}, w^{*}, \lambda^{*}\right)=(75,80,72,1 / 150)$ and the critical value is

$$
F(75,80,72,1 / 150) \approx 107.964
$$

