
The exponential growth model P = P0e
rt can be quite accurate in the

short run, but not in the long run... Because an exponentially growing

population will eventually outstrip its resources. This observation leads

to a different model...

Logistic growth: This model accounts for the fact that populations

grow in environments that generally have a carrying capacity—a

maximum sustainable size for the population growing there.

The logistic model is based on the following assumptions/requirements.

(i) When the population is small (relative to the carrying capacity), it

should grow at a rate (approximately) proportional to its size (like

exponential growth).

(ii) As the population approaches the carrying capacity, the growth

rate should approach 0.

(iii) If the initial population size is bigger than the carrying capacity,

then the growth rate should be negative.

(iv) The model should be as simple as possible.
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If the carrying capacity is M and the intrinsic growth rate is r, then the

first three assumptions translate to

(i) If P/M ≈ 0, then
dP

dt
≈ rP .

(ii) If P/M ≈ 1, then
dP

dt
≈ 0.

(iii) If P/M > 1, then
dP

dt
< 0.

These assumptions (and the desire for as simple a model as possible),

lead to the logistic equation:

dP

dt
= rP

(
1− P

M

)
,

which satisfies all three conditions:

(*) If P/M ≈ 0, then rP
(
1− P

M

)
≈ rP (1− 0) = rP

(*) If P/M ≈ 1, then rP
(
1− P

M

)
≈ rP (1− 1) = 0

(*) If P/M > 1, then rP
(
1− P

M

)
< 0
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The logistic equation is separable and is solved as follows.

First, factor out 1/M from the second factor on the right

dP

dt
= rP

(
1− P

M

)
=

r

M
P (M − P ) .

Then separate
dP

P (M − P )
=

r

M
dt.

Then integrate (using formula #5 in the appendix, with a = M and b = −1)∫
dP

P (M − P )
=

∫
r

M
dt =⇒ 1

M
ln

∣∣∣∣ P

M − P

∣∣∣∣ =
rt

M
+ C.

Finally, solve for P

1

��M
ln

∣∣∣∣ P

M − P

∣∣∣∣ =
rt

��M
+ C =⇒ ln

∣∣∣∣ P

M − P

∣∣∣∣ = rt + C

=⇒ P

M − P
= Aert

where A = ±eC .
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A little more algebra:

P = (M − P )Aert = AMert −APert =⇒ P + APert = AMert

=⇒ P (1 + Aert) = AMert

=⇒ P =
AMert

1 + Aert

The formula for P (t) can be further manipulated in different ways.

(*) A common approach is to divide the numerator and denominator by

Aert which gives

P =
M

1 + be−rt
,

where b = A−1. (Our textbook does it this way.)

(*) Another approach is to replace A by a more meaningful parameter.

Both M and r have meaningful interpretations, and it is relatively easy

to express A in terms of M and the initial population size P0.
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If t = 0, then

P0 = P (0) =
AM

1 + A
=⇒ AM = P0(1 + A) = P0 + AP0

=⇒ AM −AP0 = P0 =⇒ A(M − P0) = P0

=⇒ A =
P0

M − P0

Now, substitute this for A in the first expression for P

P =
AMert

1 + Aert
=⇒

P0

M−P0
Mert

1 + P0

M−P0
ert

Finally, multiply both top and bottom by (M − P0)e−rt, which gives

P (t) =
P0M

P0 + (M − P0)e−rt
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Figure 1: Graph of P =
P0M

P0 + (M − P0)e−rt
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Example. A new virus is spreading on a closed network of 5000

computers. By the time the virus is first spotted, 25 computers are

infected, and two hours later 200 computers are infected. Assuming

logistic growth, how many hours before half the network is infected?

In this example, we know the carrying capacity M = 5000 and the initial

population size P0 = 25, so the number of infected computers at time t

is

P (t) =
25 · 5000

25 + 4975e−rt
=

5000

1 + 199e−rt
.

From the data, we have

P (3) =
5000

1 + 199e−2r
= 200 =⇒ 5000 = 200(1 + 199e−2r)

=⇒ 25 = 1 + 199e−2r

=⇒ 24 = 199e−2r

=⇒ e2r =
199

24

=⇒ r =
1

2
ln(199/24)
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Finally, solve the equation P (t1) = 5000/2 = 2500...

2500 =
5000

1 + 199e−rt1
=⇒ 1 + 199e−rt1 =

5000

2500
= 2

=⇒ 199e−rt1 = 1 =⇒ e−rt1 =
1

199
=⇒ ert1 = 199

=⇒ t1 =
ln 199

r
=

ln 199
1
2 ln(199/24)

≈ 5

Conclusion: Half the network will be infected about 5 hours after the

virus is first detected.
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Differential calculus in several variables.

Example. A demand function

q = 5
√

8y + 7ps − 4p,

where

• q is the monthly demand for a firm’s good, measured in 1000s of

units.

• y is the average monthly income in the market for the firm’s good,

measured in 1000s of dollars.

• ps is the average price of substitutes for a firm’s good, measured in

dollars.

• p is the price of the firm’s good, measured in dollars.

(*) If the current prices are p = $10 and ps = $9, and the average income

is $3300, then the demand will be

q
∣∣∣

y=3.3
ps=9
p=10

= 5
√

26.4 + 63− 40 ≈ 35.143 =⇒ ≈ 35,143 units
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Question: What will happen to demand if the prices stay the same,

but average income decreases to y1 = 3000?

Qualitative answer: Demand will decrease.

Quantitative answer:

q
∣∣∣

y=3
ps=9
p=10

= 5
√

24 + 63− 40 ≈ 34.278 =⇒ ≈ 34, 278 units

I.e., demand will decrease by about 35, 143− 34, 278 = 865 units.

(*) Key assumption: when calculating the effect of the change in income

on the demand, we hold the other variables (the prices) fixed.

(*) We used derivatives to analyze the behavior of functions of one

variable, for example in optimization problems. We want to be able to

do the same when there are more variables.
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Definition: If w = f(x, y, z), then the partial derivative of w with

respect to x is defined by

∂w

∂x
= lim

∆x→0

f(x + ∆x, y, z)− f(x, y, z)

∆x

Likewise, the partial derivatives of w with respect to y and z are

∂w

∂y
= lim

∆y→0

f(x, y + ∆y, z)− f(x, y, z)

∆y

and
∂w

∂z
= lim

∆z→0

f(x, y, z + ∆z)− f(x, y, z)

∆z

Comments:

(i) We use the ‘curly d’ symbol (∂) to distinguish partial derivatives

from ordinary derivatives (of functions of one variable).

(ii) When differentiating with respect to one variable, the other vari-

ables are held fixed.

(iii) The usual rules of differentiation still hold... Yay!
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Example. Returning to the demand function

q = 5
√

8y + 7ps − 4p = 5(8y + 7ps − 4p)1/2,

The partial derivative of q with respect to income is

∂q

∂y
= 5 · 1

2
(8y + 7ps − 4p)−1/2 · 8 =

20

(8y + 7ps − 4p)1/2
,

(*) I used the rule for powers and the chain rule, and most importantly,

I treated p and ps as constants.

I.e., when differentiating with respect to y, we can think of the demand

function as being

q = 5(8y + C)1/2

where C = 7ps − 4p. Similarly, the other partial derivatives are

∂q

∂ps
= 5 · 1

2
(8y + 7ps − 4p)−1/2 · 7 =

35

2(8y + 7ps − 4p)1/2

and

∂q

∂p
= 5 · 1

2
(8y + 7ps − 4p)−1/2 · (−4) = − 10

(8y + 7ps − 4p)1/2
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