Techniques of integration: Substitution
Observation:  If u = g(z), then du = ¢'(z) dz.

We can use this observation to simplify integrals that have the form

/ e 2,

by substituting u = g(x), which entails du = ¢'(x) dz:
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Example 1: The substitution v = z? 4+ 3, du = 2z dx gives
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(*) The key is recognizing that a substitution is possible.

(*) What we are looking for in the integrand is a product, with one factor
being a composite function, e.g., f(g(x)), and the other factor being the

derivative of the argument of the first factor, i.e., ¢'(z).
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The integrand looks like a quotient, but really it’s a product, and one of

Example 2: Compute

the factors is composite:

2
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Substituting v = z? + 4 and du = 2z dr makes the integral easy to

compute:

U du
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/(x2+4)_1 20 dx = /u_lduzln\u\ +C =1In(z* +4) +C.




Observation: We can multiply or divide any equation by a nonzero
constant. This makes substitution more flexible.

Example 3: Compute
/ 5r? /223 + 1dx

The natural choice for a substitution is v = 22> + 1, which entails
du = 622 dx. Dividing this equation by 6, shows that

xQd:czldu — 5x2dx:%du,
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so the substitution u = 223 + 1 will work here:

U %du
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Observation: If u = ax 4+ b, then du = adx so that dr = — du. This
a

means that we can always make the following simplification

/fa:c—|—b /f

by substituting u = ax + b.

Example 4: Compute

/\S/Sx—l—Qda: = /(5x—|—2)1/3da:.

The substitution u = 5x + 2, du = Sdr — dx = % du will work here:
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Example 5: Find the demand equation for a firm whose marginal

revenue function is

dr
— =10+/1000 — 0.5¢.
o 10y/T000— 050

Observation: Since r = pq, by definition, we can find the demand
equation for this firm by

(i) Finding the revenue function r(q), and
(ii)) Writing p = r(q)/q.

Step 1. Integrate, by substituting u = 1000 — 0.5¢, du = —0.5dq =
dq = —2du:

U —2du
- S ™~ ~ =
/ 10$/1000 — 0.5 dg = 10 /(1000 —0.5¢)'/3 " dq

= —20/u1/3 du

— —15u*3 + C = —15(1000 — 0.5¢)*/3 + C

Conclusion 1: r = C — 15(1000 — O.5q)4/3




Step 2: Solve for C:
0 =r(0) = C — 15(1000)*? = C = 150000.
Conclusion: r = 150000 — 15(1000 — 0.5¢)*/3.

Step 3: Write down the demand equation:

r 15 (10000 — (1000 — 0.5¢)*/?)
q q

p:

Observation: Linear equations are easy to solve. For example, if
u = ax + b, then

r = %(u—b).




Example 6: Compute

2
dx.
/3:c+4 s

The substitution ©u = 3x + 4, du = 3dr — dx = % du can also be used

to express 2z in terms of u: = 3(u—4) = 2z = 3(u—4), so




