The chain rule (in several variables)

Suppose that $w=f(x, y, z)$ and $x=x(\alpha, \beta)$ and $y=y(\alpha, \beta) \ldots$ then...

$$
\frac{\partial w}{\partial \alpha}=\frac{\partial w}{\partial x} \cdot \frac{\partial x}{\partial \alpha}+\frac{\partial w}{\partial y} \cdot \frac{\partial y}{\partial \alpha}+\frac{\partial w}{\partial z} \cdot \frac{\partial z}{\partial \alpha}
$$

and

$$
\frac{\partial w}{\partial \beta}=\frac{\partial w}{\partial x} \cdot \frac{\partial x}{\partial \beta}+\frac{\partial w}{\partial y} \cdot \frac{\partial y}{\partial \beta}+\frac{\partial w}{\partial z} \cdot \frac{\partial z}{\partial \beta}
$$

Explanation... Use linear approximation:
Suppose that α changes by $\Delta \alpha \approx 0$ (and β remains fixed). Then

$$
\Delta x \approx \frac{\partial x}{\partial \alpha} \Delta \alpha, \quad \Delta y \approx \frac{\partial y}{\partial \alpha} \Delta \alpha \quad \text { and } \quad \Delta z \approx \frac{\partial z}{\partial \alpha} \Delta \alpha
$$

Now, if x, y and z all change, then w changes by...

$$
\begin{aligned}
\Delta w & \approx \frac{\partial w}{\partial x} \Delta x+\frac{\partial w}{\partial y} \Delta y+\frac{\partial w}{\partial z} \Delta z \\
& \approx \frac{\partial w}{\partial x}\left(\frac{\partial x}{\partial \alpha} \Delta \alpha\right)+\frac{\partial w}{\partial y}\left(\frac{\partial y}{\partial \alpha} \Delta \alpha\right)+\frac{\partial w}{\partial z}\left(\frac{\partial z}{\partial \alpha} \Delta \alpha\right) \\
& =\left(\frac{\partial w}{\partial x} \cdot \frac{\partial x}{\partial \alpha}+\frac{\partial w}{\partial y} \cdot \frac{\partial y}{\partial \alpha}+\frac{\partial w}{\partial z} \cdot \frac{\partial z}{\partial \alpha}\right) \Delta \alpha \ldots
\end{aligned}
$$

Therefore $\frac{\Delta w}{\Delta \alpha} \approx \frac{\partial w}{\partial x} \cdot \frac{\partial x}{\partial \alpha}+\frac{\partial w}{\partial y} \cdot \frac{\partial y}{\partial \alpha}+\frac{\partial w}{\partial z} \cdot \frac{\partial z}{\partial \alpha}$, so

$$
\frac{\partial w}{\partial \alpha}=\lim _{\Delta \alpha \rightarrow 0} \frac{\Delta w}{\Delta \alpha}=\frac{\partial w}{\partial x} \cdot \frac{\partial x}{\partial \alpha}+\frac{\partial w}{\partial y} \cdot \frac{\partial y}{\partial \alpha}+\frac{\partial w}{\partial z} \cdot \frac{\partial z}{\partial \alpha}
$$

Profit-maximizing: a simple example

Suppose that a firm's profit function is

$$
\Pi=f(p)=-0.4 p^{2}+60 p-500
$$

where p is the price that the firm sets and Π is the firm's weekly profit.
To find the price that maximizes profit and the maximum weekly profit, we proceed as usual:
(*) $d \Pi / d p=0 \Longrightarrow-0.8 p+60=0 \Longrightarrow p^{*}=60 / 0.8=75$
(*) $d^{2} \Pi / d p^{2}=-0.8<0 \Longrightarrow \Pi^{*}=\Pi\left(p^{*}\right)=1750$ is the maximum profit and $p^{*}=75$ is the profit maximizing price.
(*) Question: what will happen to the firm's maximum weekly profit if the parameter $\alpha=0.4$ changes to $\alpha_{1}=0.42$?

Variables and parameters

Generalizing the profit maximizing example:

$$
\Pi=f(p ; \alpha, \beta, \gamma)=-\alpha p^{2}+\beta p-\gamma
$$

where (as before)
(*) p is the price that the firm sets, and
(*) α, β and γ are quantities that are determined by the market in which the firm operates.
(*) The price p is called an endogenous variable, or just a variable, because its value is set within the model.
(*) The quantities α, β and γ are called exogenous variables, or parameters, because their values are set outside the model.
(*) When the firm is working with its profit model - e.g., to find the price which maximizes profit - the parameters α, β and γ are treated as constants.

Figure 1: The firm's profit model, in the bigger model of the market.

To maximize its profit...
(*) The firm finds the critical price p^{*} by solving the first order equation

$$
\frac{d \Pi}{d p}=0 \Longrightarrow-2 \alpha p+\beta=0 \Longrightarrow p^{*}=\frac{\beta}{2 \alpha}
$$

(*) Finds the critical profit

$$
\Pi^{*}=-\alpha\left(p^{*}\right)^{2}+\beta p^{*}-\gamma=-\frac{\beta^{2}}{4 \alpha}+\frac{\beta^{2}}{2 \alpha}-\gamma=\frac{\beta^{2}}{4 \alpha}-\gamma
$$

(*) Verifies that the critical profit is a maximum

$$
\frac{d^{2} \Pi}{d p^{2}}=-2 \alpha<0 \Longrightarrow \Pi^{*} \text { is the max profit }
$$

if the parameter $\alpha>0$.

Key observation:

The critical values of the price p and the profit Π are both functions of the parameters, α, β and γ :

$$
\begin{aligned}
p^{*} & =\frac{\beta}{2 \alpha} \\
\Pi^{*} & =\frac{\beta^{2}}{4 \alpha}-\gamma
\end{aligned}
$$

So....
If market forces cause the values of the parameters to change, then the critical price and the critical profit will both change.

Key Question: How do (small) changes in the parameters affect the critical values? More specifically, what are the rates of change

$$
\frac{\partial \Pi^{*}}{\partial \alpha}, \quad \frac{\partial \Pi^{*}}{\partial \beta} \quad \text { and } \quad \frac{\partial \Pi^{*}}{\partial \gamma} ?
$$

In this hypothetical example, we can answer this directly...

$$
\begin{gathered}
\frac{\partial \Pi^{*}}{\partial \alpha}=\frac{\partial}{\partial \alpha}\left(\frac{\beta^{2}}{4 \alpha}-\gamma\right)=-\frac{\beta^{2}}{4 \alpha^{2}} \\
\frac{\partial \Pi^{*}}{\partial \beta}=\frac{\partial}{\partial \beta}\left(\frac{\beta^{2}}{4 \alpha}-\gamma\right)=\frac{\beta}{2 \alpha} \\
\frac{\partial \Pi^{*}}{\partial \gamma}=\frac{\partial}{\partial \gamma}\left(\frac{\beta^{2}}{4 \alpha}-\gamma\right)=-1
\end{gathered}
$$

In particular

$$
\left.\frac{\partial \Pi^{*}}{\partial \alpha}\right|_{\substack{\alpha=0.4 \\ \beta=60 \\ \gamma=500}}=-\frac{3600}{4 \cdot 0.16}=-5625
$$

so if $\Delta \alpha=0.02(\alpha$ changes from 0.4 to 0.42$)$, then

$$
\left.\Delta \Pi^{*} \approx \frac{\partial \Pi^{*}}{\partial \alpha}\right|_{\substack{\alpha=0.4 \\ \beta=60 \\ \gamma=500}} \cdot \Delta \alpha=-5625 \cdot 0.02=-112.5
$$

But...

In general, it can be tricky to express the critical values as explicit functions of the parameters.

Happily there is a convenient work-around based on the chain rule...

The Envelope Theorem

Suppose we have a function $F(x, y, z ; \alpha, \beta)$ that depends on three variables, x, y and z, and two parameters, α and β.

And also suppose that $\left(x^{*}, y^{*}, z^{*}\right)$ is a critical point of this function. This means that

$$
\begin{aligned}
& F_{x}\left(x^{*}, y^{*}, z^{*} ; \alpha, \beta\right)=0 \\
& F_{y}\left(x^{*}, y^{*}, z^{*} ; \alpha, \beta\right)=0 \\
& F_{z}\left(x^{*}, y^{*}, z^{*} ; \alpha, \beta\right)=0
\end{aligned}
$$

and F^{*} is the corresponding critical value:

$$
F^{*}=F\left(x^{*}, y^{*}, z^{*} ; \alpha, \beta\right)
$$

Just as in the profit-maximizing example, the critical point and critical value are functions of the parameters:

$$
x^{*}=x^{*}(\alpha, \beta), y^{*}=y^{*}(\alpha, \beta), z^{*}=z^{*}(\alpha, \beta) \quad \text { and } \quad F^{*}=F^{*}(\alpha, \beta)
$$

To find $\partial F^{*} / \partial \alpha$ and $\partial F^{*} / \partial \beta$, we use the chain rule:

$$
\begin{aligned}
\frac{\partial F^{*}}{\partial \alpha}= & \frac{\partial}{\partial \alpha} F\left(x^{*}, y^{*}, z^{*} ; \alpha, \beta\right) \\
= & \left.\frac{\partial F}{\partial x}\right|_{\substack{x=x^{*} \\
y=y^{*} \\
z=z^{*}}} \cdot \frac{\partial x^{*}}{\partial \alpha}+\left.\frac{\partial F}{\partial y}\right|_{\substack{x=x^{*} \\
y=y^{*} \\
z=z^{*}}} \cdot \frac{\partial y^{*}}{\partial \alpha}+\left.\frac{\partial F}{\partial z}\right|_{\substack{x=x^{*} \\
y=y^{*} \\
z=z^{*}}} ^{0} \cdot \frac{\partial z^{*}}{\partial \alpha} \\
& +\left.\frac{\partial F}{\partial \alpha}\right|_{\substack{x=x^{*} \\
y=y^{*} \\
z=z^{*}}} \cdot \frac{\partial \alpha}{\partial \alpha}+\left.\frac{\partial F}{\partial \beta}\right|_{\substack{x=x^{*} \\
y=y^{*} \\
z=z^{*}}} \cdot \frac{\partial \not \beta^{\prime}}{\partial \alpha} \\
= & F_{\alpha}\left(x^{*}, y^{*}, z^{*} ; \alpha, \beta\right)
\end{aligned}
$$

(Assuming that α and β are independent of each other!)
In words: The partial derivative of the critical value F^{*} with respect to a parameter α is equal to the partial derivative of the original function F with respect to α, evaluated at the critical point.

Returning to the profit-maximizing example (in which case there is one variable and three parameters)...

The original profit function was

$$
\Pi=-\alpha p^{2}+\beta p-\gamma
$$

and the critical point was

$$
p^{*}=\frac{\beta}{2 \alpha}
$$

Now,

$$
\Pi_{\alpha}=-p^{2}
$$

so according to the envelope theorem

$$
\frac{\partial \Pi^{*}}{\partial \alpha}=\Pi_{\alpha}\left(p^{*} ; \alpha, \beta, \gamma\right)=-\left(p^{*}\right)^{2}=-\frac{\beta^{2}}{4 \alpha^{2}}
$$

which agrees with what we found before.

