
Observation: This situation is analogous to what we saw in the

beginning of the quarter with indefinite integrals.

If f(x) is continuous, then there are infinitely many solutions to the

(differential) equation

y′ = f(x)

given by the indefinite integral

y =

∫
f(x) dx = F (x) + C,

where F (x) is any (particular) antiderivative of f(x).

But there is only one solution to the initial value problem

y′ = f(x); y(x0) = y0,

which we find by using the data y(x0) = y0 to solve for C

y = F (x) +

C︷ ︸︸ ︷
(y0 − F (x0)).
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The amount of data that we require to find a specific solution depends

on the number of unspecified parameters that appear in the general

solution of the differential equation.

Example 2. (cont.) We saw that if labor-elasticity of output (ηq/l) is

constant, then the production function must have the form

q = Alη0 ,

where η0 is the value of the constant elasticity.

If η0 is known, then we just need one data point to find A, but if η0 is

unknown, we will need two data points...
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Suppose that the production function we seek has constant labor-

elasticity and also satisfies q(20) = 200 and q(30) = 250. This data

leads to a pair of equations for the unknown parameters A and η0, which

we solve as follows:

A · 20η0 = 200

A · 30η0 = 250

 =⇒ �A30η0

�A20η0
=

250

200
=⇒

(
3

2

)η0
=

5

4
.

Taking logarithms of both sides of the right-most equation gives

η0 ln(3/2) = ln(5/4) =⇒ η0 =
ln(5/4)

ln(3/2)
(≈ 0.55034),

and

A = 200 · 20−η0 ≈ 38.461.

I.e.,

q ≈ 38.461 · l0.55034

is the production function we seek.
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Summary: To solve the (separable) ‘initial’ value problem

Φ(y, y′, x) = 0; y(x0) = y0, y(x1) = y1, . . . , y(xn) = yn

(i) Separate:

Φ(y, y′, x) = 0 =⇒ h(y)
dy

dx
= g(x) =⇒ h(y) dy = g(x) dx.

(ii) Integrate (if possible):

h(y) dy = g(x) dx =⇒
∫
h(y) dy =

∫
g(x) dx =⇒ H(y) = G(x) + C.

(iii) Solve for y (if possible):

H(y) = G(x) + C =⇒ y = H−1
(
G(x) + C

)
.

(iv) Use data to solve for C (and any other unspecified parameters

in H and G). The number of data points should generally match the

number of unknown constants.
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Example 3. Solve the initial value problem

y′ =
3x+ 1

y
; y(1) = 2.

Separate: y′ =
3x+ 1

y
=⇒ y

dy

dx
= 3x+ 1 =⇒ y dy = (3x+ 1) dx

Integrate:

∫
y dy =

∫
3x+ 1 dx =⇒ 1

2
y2 =

3

2
x2 + x+ C.

Solve for y:

1

2
y2 =

3

2
x2 + x+C =⇒ y2 = 3x2 + 2x+C =⇒ y = ±

√
3x2 + 2x+ C

Solve for C (and the ±): Since y(1) = 2 > 0, we choose the + sign. As

for C:

y(1) = 2 =⇒ 2 = +
√

3 · 12 + 2 · 1 + C =
√

5 + C =⇒ C = −1,

so the solution is

y =
√

3x2 + 2x− 1.
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Example 4. A metal ball is heated to a temperature of 100◦C and then

dropped into a tank of water kept at a constant temperature of 5◦C.

After 20 minutes, the temperature of the ball is measured to be 73◦C.

When will the temperature of the ball reach a temperature of 20◦C?

Recall that Newton’s law of cooling says that

dT

dt
= k(T − τ)

where

• T = T (t) is the temperature the body, as a function of time t.

• τ is the constant ambient temperature of the medium (water in this

case).

• k is an unknown constant that depends on the physical characteris-

tics of the body and the medium.

In this example, τ = 5◦, so the differential equation we need to solve

here is
dT

dt
= k(T − 5).

12



Separate:
dT

dt
= k(T − 5) =⇒ dT

T − 5
= k dt.

Integrate:

∫
dT

T − 5
=

∫
k dt =⇒ ln |T − 5| = kt+ C.

Solve for T : eln |T−5| = ekt+C =⇒ |T − 5| = eC · ekt

=⇒ T − 5 = ±eC · ekt

=⇒ T = 5 +Aekt

where A = ±eC .

Use data to find A and k: We know that T (0) = 100 and T (20) = 73

(measuring time in minutes). From the first data point, we have

100 = T (0) = 5 +Ae0 = 5 +A =⇒ A = 95.

From this and the second data point, we have

73 = T (20) = 5 + 95e20k =⇒ 95e20k = 68 =⇒ e20k =
68

95

so

k =
1

20
ln(68/95) (≈ −0.01672)
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Answer the question:

We want to find the time t1 such that T (t1) = 20, so we have to solve

the equation

20 = T (t1) = 5 + 95ekt1

Subtracting 5, dividing by 95 and taking logarithms gives

ekt1 =
15

95
=

3

19
=⇒ kt1 = ln(3/19) =⇒ t1 = 20 · ln(3/19)

ln(68/95)
≈ 176.12

I.e., the temperature of the ball will reach 20◦C about 2 hours, 56

minutes and 7 seconds after the ball is dropped into the water.
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Modeling population growth

1. Exponential growth: The simplest model for population growth is

based on the assumption that the population grows at a rate proportional

to its size. This leads to the differential equation

dP

dt
= rP,

where P (t) is the size of the population at time t, and r is an (unknown)

parameter (called the intrinsic growth rate). This equation is easy to

solve (after separating the variables):

dP

P
= r dt =⇒

∫
dP

P
= r

∫
dt =⇒ lnP = rt+ C =⇒ P = Aert,

where

• A = eC , and in fact...

• A = P (0) = P0, the initial population size, and the exponential

growth model is

P (t) = P0e
rt.
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Example 5. The population of a small island in the year 1950 was

870 people, and in the year 2000, the population was 1250. Assuming

exponential growth, what will the island’s population be in the year

2050? How about in 2150?

Based on the assumption of exponential growth, we have

P (t) = 870ert,

with time being measured in years, and t = 0 corresponding to the year

1950. This means that

1250 = P (50) = 870e50r =⇒ e50r =
1250

870
=⇒ 50r = ln(125/87)

=⇒ r =
1

50
ln(125/87) (≈ 0.00725)

Therefore

P (100) = 870e100r ≈ 1796 and P (200) = 870e200r ≈ 3708.
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The exponential growth model can be quite accurate in the short run,

but not in the long run... Because an exponentially growing population

will eventually outstrip its resources.

2. Logistic growth: This model for population growth takes into account

the fact that populations grow in environments that generally have

a carrying capacity—a maximum sustainable size for the population

growing there. The carrying capacity depends on the resources available

in the environment.

The logistic model is based on the following assumptions/requirements.

(i) When the population is small (relative to the carrying capacity), it

should grow at a rate (approximately) proportional to its size (like

exponential growth).

(ii) As the population approaches the carrying capacity, the growth

rate should approach 0.

(iii) The model should be as simple as possible.
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These requirements lead to what is called the logistic equation:

dP

dt
= rP

(
1− P

M

)
= rP

(
M − P
M

)
,

where r is the intrinsic growth rate and M is the carrying capacity.

The logistic equation is separable and is solved as follows.

dP

dt
= rP

(
M − P
M

)
=⇒ dP

P (M − P )
=

r

M
dt∫

dP

P (M − P )
=

∫
r

M
dt =⇒ 1

��M
ln

∣∣∣∣ P

M − P

∣∣∣∣ =
rt

��M
+ C

=⇒ ln

∣∣∣∣ P

M − P

∣∣∣∣ = rt+ C =⇒ P

M − P
= Aert where A = ±eC

=⇒ P = (M − P )Aert =⇒ P (1 +Aert) = AMert

=⇒ P =
AMert

1 +Aert
=

M

be−rt + 1
where b = A−1
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Another convenient way to express the logistic growth function uses the

parameter P0 = P (0).

If P (0) = P0, then using the equation P = (M − P )Aert and plugging

in t = 0, gives

P0 = A(M − P0) =⇒ A =
P0

M − P0
.

Now substituting this into the expression

P =
M

A−1e−rt + 1

gives

P (t) =
M

M−P0

P0
e−rt + 1

=
MP0

P0 + (M − P0)e−rt

after multiplying top and bottom by P0.

19


