1. The demand function for a firm's product is given by $q=\frac{40 \sqrt{5 y+6 p_{s}}}{2 p+5}$, where

- q is the monthly demand for the firm's product, measured in 1000's of units;
- y is the average monthly disposable income in the market for the firm's product measured in 1000 s of dollars;
- p_{s} is the average price of substitutes for the firm's product, measured in dollars;
- p is the price of the firm's product, also measured in dollars.
(a) (6 pts) Find $\partial q / \partial y, \partial q / \partial p_{s}$ and $\partial q / \partial p$ when the monthly income is $\$ 3000$ and the prices are $p_{s}=11$ and $p=10$. Round your (final) answers to two decimal places.

Remember: if monthly income is $\$ 3000$, then $y=3$.

$$
\begin{aligned}
& \frac{\partial q}{\partial y}=\frac{\partial}{\partial y}\left(\frac{40}{2 p+5}\left(5 y+6 p_{s}\right)^{1 / 2}\right)=\frac{40}{2 p+5} \cdot \frac{1}{2}\left(5 y+6 p_{s}\right)^{-1 / 2} \cdot 5=\frac{100\left(5 y+6 p_{s}\right)^{-1 / 2}}{2 p+5}, \\
& \text { so }\left.\frac{\partial q}{\partial y}\right|_{\substack{y=3 \\
p_{s}=11 \\
p=10}}=\frac{100(81)^{-1 / 2}}{25}=\frac{4}{9} \quad(\approx 0.444) . \\
& \frac{\partial q}{\partial p_{s}}=\frac{\partial}{\partial p_{s}}\left(\frac{40}{2 p+5}\left(5 y+6 p_{s}\right)^{1 / 2}\right)=\frac{40}{2 p+5} \cdot \frac{1}{2}\left(5 y+6 p_{s}\right)^{-1 / 2} \cdot 6=\frac{120\left(5 y+6 p_{s}\right)^{-1 / 2}}{2 p+5}, \\
& \text { so }\left.\frac{\partial q}{\partial p_{s}}\right|_{\substack{y=3 \\
p_{s}=11 \\
p=10}}=\frac{120(81)^{-1 / 2}}{25}=\frac{8}{15} \quad(\approx 0.533) . \\
& \frac{\partial q}{\partial p}=\frac{\partial}{\partial p}\left(40 \sqrt{5 y+6 p_{s}}\right)(2 p+5)^{-1}=\left(40 \sqrt{5 y+6 p_{s}}\right)(-1)(2 p+5)^{-2} \cdot 2=-80 \sqrt{5 y+6 p_{s}}(2 p+5)^{-2}, \\
& \text { so }\left.\frac{\partial q}{\partial p}\right|_{\substack{y=3 \\
p=11 \\
p=10}}=\frac{-80 \sqrt{81}}{25^{2}}=-\frac{144}{125} \quad(=-1.152) .
\end{aligned}
$$

(b) (4 pts) Use linear approximation and your answer to (a) to estimate the change in monthly demand for the firm's product if the price of the firm's product decreases to $\$ 9$ and the price of substitutes decreases to $\$ 10$, but income remains fixed.

If income remains fixed, then $\Delta y=0$, and the changes in the prices are $\Delta p_{s}=\Delta p=-1$, so
$\left.\Delta q \approx \frac{\partial q}{\partial p_{s}}\right|_{\substack{y=3 \\ p_{s}=11 \\ p=10}} \cdot \Delta p_{s}+\left.\frac{\partial q}{\partial p}\right|_{\substack{y=3 \\ p_{s}=11 \\ p=10}} \cdot \Delta p=\frac{8}{15} \cdot(-1)+\left(-\frac{144}{125}\right) \cdot(-1)=\frac{144}{125}-\frac{8}{15}=\frac{232}{375} \quad(\approx 0.619)$,
so demand will increase by about 619 units (remember that q is measured in 1000 s of units).
3. (10 pts) Find the critical point(s) and critical value(s) of the function

$$
f(x, y)=3 x^{2}+y^{3}-6 x y+5,
$$

and use the second derivative test to classify the critical value(s) as relative minimum value(s), relative maximum value(s) or neither.

Critical points:

$$
\begin{aligned}
& f_{x}=0 \Longrightarrow 6 x-6 y=0 \\
& f_{y}=0 \Longrightarrow 3 y^{2}-6 x=0
\end{aligned}
$$

The equation $f_{x}=0$ implies that $x=y$, and substituting this into the equation $f_{y}=0$ gives

$$
3 y^{2}-6 y=0 \Longrightarrow 3 y(y-2)=0
$$

so the critical y-values are $y_{1}=0$ and $y_{2}=2$ and the critical points are $(0,0)$ and $(2,2)$.

Second derivative test:

$$
f_{x x}=6, f_{y y}=6 y \text { and } f_{x y}=-6 \quad \text { so } \quad D(x, y)=f_{x x} f_{y y}-f_{x y}^{2}=36 y-36
$$

At the critical point $(0,0)$, we have $D(0,0)=-36<0$, so $f(0,0)=5$ is neither a minimum nor a maximum value.

At the critical point $(2,2)$, we have $D(0,0)=36>0$ and $f_{x x}(2,2)=6>0$, so $f(2,2)=1$ is a relative minimum value.

