1. $(6 \mathrm{pts}) \int_{0}^{3} \frac{2 x}{\sqrt{7 x+4}} d x=2\left(\left.\frac{2(7 x-8) \sqrt{7 x+4}}{147}\right|_{0} ^{3}\right)=2\left(\frac{26 \sqrt{25}}{147}-\frac{-16 \sqrt{4}}{147}\right)=\frac{108}{49} \quad(\approx 2.2041)$,
using the formula $\int \frac{u d u}{\sqrt{a+b u}}=\frac{2(b u-2 a) \sqrt{a+b u}}{3 b^{2}}+C, \quad$ with $a=4$ and $b=7$.
2. (6 pts) Find the present value of a continuous income stream that pays at the annual rate $f(t)=1000 t$ for $T=10$ years, assuming that the interest rate is $r=3 \%$.

$$
P V=\int_{0}^{T} f(t) e^{-r t} d t=\int_{0}^{10} 1000 t e^{-0.03 t} d t=1000\left(\left.\frac{e^{-0.03 t}}{(-0.03)^{2}}(-0.03 t-1)\right|_{0} ^{10}\right) \approx 41040.35,
$$

using the formula $\int u e^{a u} d u=\frac{e^{a u}}{a^{2}}(a u-1)+C$, with $a=-0.03$.
3. (4 pts) Find the function $y=f(x)$ that satisfies (i) $\frac{d y}{d x}=x y^{2}$ and \quad (ii) $f(0)=\frac{1}{2}$.

Separate: $\frac{d y}{d x}=x y^{2} \Longrightarrow \frac{d y}{y^{2}}=x d x$.
Integrate: $\int \frac{d y}{y^{2}}=\int x d x \Longrightarrow-\frac{1}{y}=\frac{x^{2}}{2}+C$.
Solve for C : $f(0)=\frac{1}{2} \Longrightarrow-\frac{1}{1 / 2}=\frac{0^{2}}{2}+C \Longrightarrow C=-2$.
Solve for $y:-\frac{1}{y}=\frac{x^{2}}{2}-2=\frac{x^{2}-4}{2} \Longrightarrow \frac{1}{y}=\frac{4-x^{2}}{2} \Longrightarrow y=\frac{2}{4-x^{2}}$.
Comment: You can also solve for y first and then solve for C.
4. (4 pts) Find the indicated partial derivatives of the function $f(x, y)=3 x^{2} \ln (2 x+5 y)$. Clean up your answer.
$\frac{\partial f}{\partial x}=6 x \ln (2 x+5 y)+3 x^{2} \cdot \frac{2}{2 x+5 y}=6 x \ln (2 x+5 y)+\frac{6 x^{2}}{2 x+5 y} \quad$ (product rule and chain rule for $\left.\ln (2 x+5 y)\right)$.
$\frac{\partial f}{\partial y}=3 x^{2} \cdot \frac{5}{2 x+5 y}=\frac{15 x^{2}}{2 x+5 y} \quad$ (chain rule).

