1. $(6 \mathrm{pts}) \int_{1}^{3} 4 x\left(x^{2}-1\right)^{2 / 3} d x=\int_{0}^{8} 2 u^{2 / 3} d u=\left.\frac{2 u^{5 / 3}}{5 / 3}\right|_{0} ^{8}=\frac{6}{5}\left(8^{5 / 3}-0^{5 / 3}\right)=\frac{192}{5} \quad(=38.4)$

Make the substitution: $u=x^{2}-1$, so $d u=2 x d x$ and $4 x d x=2 d u$. Also, the limits of integration change: $x=1 \Longrightarrow u=0$ and $x=3 \Longrightarrow u=8$.
2. (7 pts) A firm's marginal cost function is given by $d c / d q=5+0.02 q$, where q is the number of deluxe widgets the firm produces and cost is measured in $\$ 1000$ s. Find the total change in the firm's cost if output increases from 10 widgets to 15 widgets.
According to the fundamental theorem of calculus:

$$
c(15)-c(10)=\int_{10}^{15} \frac{d c}{d q} d q=\int_{10}^{15} 5+0.02 q d q=5 q+\left.\frac{0.02 q^{2}}{2}\right|_{10} ^{15}=(75+2.25)-(50+1)=26.25
$$

(I.e., cost increases by $\$ 26,250.00$)
3. (7 pts) Find the Gini coefficient of inequality for the nation whose wealth distribution curve is

$$
f(x)=0.8 x^{4}+0.2 x^{3} .
$$

(In this case, $f(x) \times 100 \%$ is the percentage of the national wealth owned by the poorest $x \times 100 \%$ of the population.)

The Gini coefficient (γ) is defined by the first expression on the left below, but can be computed using any of the other equivalent expressions:

$$
\gamma=\frac{\int_{0}^{1} x-f(x) d x}{\int_{0}^{1} x d x}=\frac{\int_{0}^{1} x d x-\int_{0}^{1} f(x) d x}{\frac{1}{2}}=2\left(\frac{1}{2}-\int_{0}^{1} f(x) d x\right)=1-2 \int_{0}^{1} f(x) d x .
$$

For the given wealth distribution curve, we have

$$
\gamma=1-2 \int_{0}^{1} 0.8 x^{4}+0.2 x^{3} d x=1-2\left(\frac{0.8 x^{5}}{5}+\left.\frac{0.2 x^{4}}{4}\right|_{0} ^{1}\right)=1-2((0.16+0.05)-(0+0))=0.58 .
$$

